
Fuzzing Bitcoin Core

Content

● Fuzzing
○ What is it? Why do it?
○ Coverage guided fuzzers
○ Bug Oracles (Sanitizers, Differential Fuzzing, etc.)
○ Best practices for targets

● Bitcoin Core
○ Fuzzing Infrastructure
○ How/what to contribute

● Fuzzing: testing code with generated inputs
● Common forms:

○ Mutation based - generate new test cases by mutating existing samples (also known as the
corpus)

○ Generation based - generate new test cases based on a model of the input
■ e.g. Fuzzing a C compiler by having inputs generated based on the grammar for C

● Coverage guided fuzzing
○ Extension to mutation based fuzzing
○ Creates feedback loop by extending the corpus with mutated inputs that achieved new

coverage
○ Examples: libFuzzer, afl++, centipede, ...

Fuzzing

Coverage guided fuzzers

● Useful when testing …
○ software that takes untrusted inputs (security)
○ implementations against each other (correctness)
○ high volume APIs (stability)

● Not a replacement for regular property based testing (e.g. unit tests)
● Must be done continuously 24/7

○ fuzz targets that are not being executed are not really useful

Fuzzing

libFuzzer example

struct json_obj* parse_json(const uint8_t *json_str, size_t length) { /** ... */ }

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

 parse_json(data, size);

 return 0;

}

● `LLVMFuzzerTestOneInput` is the entry to your fuzz target
○ `data` and `size` represent the generated test case as a byte array (passed in by the fuzz engine)

● libFuzzer keeps mutating inputs from the corpus and executing the target until it
finds a bug

● “Interesting” inputs (e.g. new coverage) are stored in the corpus →feedback loop
● Fuzz targets are instrumented to help libFuzzer make smarter mutations

○ CMP instruction tracing
○ Shims for byte/string utilities memcmp, strcmp, etc.
○ https://github.com/llvm/llvm-project/tree/main/compiler-rt/lib/fuzzer

https://github.com/llvm/llvm-project/tree/main/compiler-rt/lib/fuzzer

How are bugs detected?

● Checking for bugs is harder when inputs aren’t fixed
○ You are the oracle when writing unit tests

● Superficial targets might find crashes but they can’t find logical bugs
○ e.g. `parse_json` might crash on some weird input but the fuzz target won’t report invalid json

inputs that pass parsing
● Bug oracles are needed to detect bugs when fuzzing

struct json_obj* parse_json(const uint8_t *json_str, size_t length) { /** ... */ }

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

 parse_json(data, size);

 return 0;

}

Bug Oracles (1/2)

● Assertions
○ Add assertions for assumptions that are internal to your code

● Resource limits
○ e.g. time or memory constraints

● Sanitizers (making C/C++ sane)
○ Undefined-behaviour - detect e.g. integer overflows, out-of-bounds shifts
○ Thread - detect data races
○ Leak - detect memory leaks, malloc/free accounting
○ Memory - detect reads of uninitialised memory
○ Address - detect memory errors, e.g. out-of-bounds heap/stack access, use-after-free

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html

Bug Oracles (2/2)

● Function inverse pairs
○ e.g. encode/decode, encrypt/decrypt

● Differential fuzzing
○ Test 2 implementations of the same thing against each other
○ Pass inputs to both implementations and assert that the outputs are equal

● Null space transformations
○ Only perform mutations that preserve semantics
○ e.g. when testing a compiler, replacing occurrences of x with (x * 1.0) or (x + 1 - 1) should not

change the behaviour of the program
● Domain specific checks

○ e.g. A bitcoin block valid under some soft-fork rule should also be valid if the soft-fork is not
enforced

Best practices for targets (1/2)

● Avoid non-bug crashes
○ Expect the fuzzer provided inputs to be malformed
○ Write tests for your test utilities

● Verify coverage
○ Make sure your target actually reaches the code under test
○ Work around blockers (checksums, encryption, compression, etc.)

● Determinism
○ Given the same input the target should behave the same
○ Crashes that are not reproducible are annoying
○ Avoid using “actual” randomness (use fixed seeds, mock randomness)
○ Don’t forget to reset global state each iteration (or avoid global state entirely)

Best practices for targets (1/2)

● Performance
○ Fuzzing is a search, the faster the search the better
○ 1000 execs/sec is the benchmark Google recommends
○ Avoid expensive I/O (reading from/writing to disk)

● Keep the scope of targets small
○ Direct the fuzzer to the interesting areas of your code
○ Split into sub-targets for “large” APIs
○ Mock components that are not under test
○ Fuzzing 🤝 Auditing

● https://github.com/google/fuzzing/blob/master/docs/good-fuzz-target.md

https://github.com/google/fuzzing/blob/master/docs/good-fuzz-target.md

Bitcoin Core’s Fuzzing Infrastructure

● As of April 2023, we have 195 targets
● Input corpora are maintained at github.com/bitcoin-core/qa-assets
● We are on oss-fuzz

○ ClusterFuzz instance managed by Google to support notable OSS projects
○ “As of February 2023, OSS-Fuzz has helped identify and fix over 8,900 vulnerabilities and

28,000 bugs across 850 projects.”
○ 90 day disclosure deadline for bugs (exceptions do apply)

● Contributors run their own infra to generate inputs
○ Hard to quantify how many CPUs are actually running our fuzz targets
○ We don’t get a lot of contributions to our corpora😢
○ Not easy to self-host good fuzzing infra

http://github.com/bitcoin-core/qa-assets

Bitcoin Core’s Fuzzing Infrastructure

● Coverage reports
○ https://marcofalke.github.io/b-c-cov/fuzz.coverage/index.html
○ https://storage.googleapis.com/oss-fuzz-coverage/bitcoin-core/reports/20230213/linux/src/bitcoin-core/report.ht

ml
● Fuzz targets are run in CI

○ Uses our input corpora as regression tests
○ Does not generate new inputs

● Fuzzing framework is fuzz engine agnostic
○ Supported: libFuzzer, afl++, hongfuzz, … (basically anything with a byte array interface)

● (Marco)

● On my wishlist: Our own ClusterFuzz instance
○ downside: needs to be maintained
○ up side: can throw money at fuzzing

https://marcofalke.github.io/b-c-cov/fuzz.coverage/index.html
https://storage.googleapis.com/oss-fuzz-coverage/bitcoin-core/reports/20230213/linux/src/bitcoin-core/report.html
https://storage.googleapis.com/oss-fuzz-coverage/bitcoin-core/reports/20230213/linux/src/bitcoin-core/report.html

Fuzzing Bitcoin Core with libFuzzer

● Fork mode is great
○ Let’s you fuzz on multiple cores
○ Includes a merge step
○ Results in a minimized corpus

● Start with an empty corpus or a seeded one (e.g. from the qa-assets repo)
● Target is specified through the `FUZZ` environment variable

○ `process_message` is a target for fuzzing the processing of a singular p2p message
○ “PRINT_ALL_FUZZ_TARGETS_AND_ABORT=1 ./src/test/fuzz/fuzz”

● Suppressions are required for some sanitizers
○ see “test/sanitizer_supressions/”

● https://github.com/bitcoin/bitcoin/blob/master/doc/fuzzing.md

$ git clone https://github.com/bitcoin/bitcoin

$ cd bitcoin/

$./autogen.sh

$ CC=clang CXX=clang++ ./configure --enable-fuzz --with-sanitizers=fuzzer,undefined

$ make

$ FUZZ=process_message src/test/fuzz/fuzz -fork=<number of cores> corpus_dir

https://github.com/bitcoin/bitcoin/blob/master/doc/fuzzing.md

Merging the corpus into qa-assets

● Merging only retains inputs that achieve new coverage
● Open PR to qa-assets with the new inputs

○ New inputs act as regression tests
● Collaboratively growing a corpus accumulates the work that is done

$ git clone https://github.com/bitcoin-core/qa-assets

$ FUZZ=process_message ./src/test/fuzz/fuzz -merge=1 qa-assets/fuzz_seed_corpus/process_message corpus_dir

Please contribute

● Run the fuzzers & contribute inputs to our corpora
○ Report sensitive bugs to security@bitcoincore.org (See SECURITY.md)

● Write fuzz targets for uncovered code
○ e.g. The wallet has poor coverage (#27272)

● Improve our bug oracles
● Enforce best practices

https://github.com/bitcoin-core/qa-assets
mailto:security@bitcoincore.org
https://github.com/bitcoin/bitcoin/issues/27272

Link dump

https://github.com/google/fuzzing/tree/master/docs
https://www.youtube.com/watch?v=UBbQ_s6hNgg
https://www.youtube.com/watch?v=U60hC16HEDY
https://media.ccc.de/v/35c3-9579-attacking_chrome_ipc
https://www.youtube.com/watch?v=NI2w6eT8p-E
https://www.youtube.com/watch?v=S8JvzWDnjc0
https://blog.regehr.org/archives/1687
https://blog.regehr.org/archives/856
https://www.llvm.org/docs/LibFuzzer.html

https://github.com/google/fuzzing/tree/master/docs
https://www.youtube.com/watch?v=UBbQ_s6hNgg
https://www.youtube.com/watch?v=U60hC16HEDY
https://media.ccc.de/v/35c3-9579-attacking_chrome_ipc
https://www.youtube.com/watch?v=NI2w6eT8p-E
https://www.youtube.com/watch?v=S8JvzWDnjc0
https://blog.regehr.org/archives/1687
https://blog.regehr.org/archives/856
https://www.llvm.org/docs/LibFuzzer.html

Input splitting

● Most APIs don’t take a byte array as input
● Common formats (e.g. bolt11 invoices, png images)

○ Desirable if you plan on sharing the corpus between targets or projects
○ Easy to seed

● FuzzedDataProvider
○ C++ helper for dynamically splitting fuzz inputs into various types (provided by llvm)

■ Provides functions to parse fuzz inputs, e.g. ConsumeBool, ConsumeIntegral,
ConsumeIntegralInRange

○ Inputs will have a custom serialization format
■ Makes it harder to seed the input corpus
■ Input format can change when the target changes → invalidates the input corpus

● https://github.com/google/fuzzing/blob/master/docs/split-inputs.md

https://github.com/google/fuzzing/blob/master/docs/split-inputs.md

