BitVM

Off-chain Bitcoin Contracts

Motivation

e Blockchains don't scale
e Lightning doesn't quite scale
e (Can we scale Bitcoin to billions of users?

Envisioning an Ideal World

e 100 - 1000x higher throughput

e Free market of L2s (zk-rollups, sidechains, zkCoins, ...)
e Rapid innovation / cheap experimentation

e All L2s interconnected via LN

e Possible, but we need bridges!

Overview

e Stateful Bitcoin Scripts
e BitVM architecture
e BitVM bridges

Stateful Bitcoin Scripts

Bitcoin Script

e Satoshi disabled all the fun opcodes

e Reduced to minimum

e But enough interesting opcodes are left
e Scripts can be up to 4mb

e Bitcoin Script code golf

Stateful Bitcoin Scripts

e Idea: If we could sign a value...

e Enforcing the same value for x in script1 and script2
e Punish equivocation

e How to sign a value though?

e \We don't have CSFS...

Lamport Signatures

e Conceptually very simple

e Require only hash functions

e Possible in Bitcoin Script

e Main drawback: large

e But one can sign a u8, u32, u160

Lamport Signature for a 1-bit Message

OP_HASH160
OP_DUP

<0x1592e757267b7f307324f1e78b344721f8b6146f3> // This is hashl
OP_EQUAL
OP_DUP

OP_ROT
<@x100b9f19ebd537fdc371fal367d7ccc802dc2524> // This is hash@
OP_EQUAL

OP_BOOLOR
OP_VERIFY

// Now the value of the bit commitment is on the stack. Either "0" or "1".

Bit\VM Architecture

BitVM the paradigm

e Tries to keep things off-chain (like LN)

e 2-party setting: prover and verifier

e Optimistic computation

e Disprove a faulty result (much easier than execution)
o T[ree++

Tree++

e Language to express Bitcoin Contracts in graphs of transactions
e Templating language for Script

o Evaluate constant expressions

o Unroll loops

o Compose functions

Statefulness via Lamport signatures (u8, u32, u160, ...)
Composite opcodes (xor, shift, mul, blake3, ...)

Connector outputs

Potentially large scripts, large Taptrees, and large TX graphs

BitVM the Bitcoin VM

e Don't want to hand-craft and hand-optimize a low-level circuit for
every application

e Build some generic VM

e Succinctly disprove any faulty result

e Ideally: RISC-V architecture

BitVM Specs

e Basic instruction set rv32i

e Compile target for clang, gcc, LLVM

e Use existing C/ C++/Rust/ ... libraries
e STARK & SNARK verifiers, etc...

BitVM Detailed Specs

e Max steps: 2432

e Memory: 232 * 4 bytes ~ 17GB

e \Worst case: ~40 rounds of challenge & response
e "Court case" runs for up to half a year

e In total: ~150kb of Scripts

e \Worst case is heavily disincentivized

e Likely never happens in real world applications

github.com/bitvm/bitvm/docs

BitVM Transaction Graph

vicky Koz vt 1 nct ciuea i troeemcotiy ChallengevalueA
NorklaRanpansot
Merk1eChallenget sereie s
NerkleResponses
S Pkt b1l Mork1aChallongas sieeic s
HorklcHasht Nerklokash2 verkloashzt
g o oo st 11 ato1toar) Punish Equivocation

BT e

S

o

werkloRootHash

herkleHasnt

vs Vicky

Implicit Values
n_i = 2i + sum for j > 1 each b_j * 2*%j
KLCKOEL
N = sum for J < 32 cach b_j * 2
TraceResponsel etin sy
TraceChallengel b H b oG
TraceResponses? S
Tracecnallenges2 .o A commstaent P
ASN_D0. u_sco
Gormi tInstruction Ssutty currant prca
= e
s %,
Challengevalues ChallengevalueG
MarkloRosponsat e torklaRasponso1 oy
NerkleChallenged siesce <. st terklechallenget siere <. o1t
MerkleResponses e P — o
Nork1aChallongos scvae.s: ais tiork1oChallange sicrac s
HerklcHashz torkLewasnzo erk cRoothash Verklohasht erklcHasnz UerklcHashzo torkLeRoot

Punish Equivocation

Punish Equivocation

challengepcCurr

challengepcNext

Punish Equivocation

Punish Equivocation

Instructions

DisproveProgran

Vicky and Paul agree in their contract on some program and the

initial state of the VM, 0
KickOff
TraceResponsel et
TraceChallengel b_31: bit
TraceResponse32 a5y

TraceChallenge32 b_0: bit

This root has a leaf
for every type of
instruction

ASM_ADD

ASM_BEQ

Implicit Values

n_i= 2**i + sum for j > i each b_j

n_31
n_30
n_29
n_28

n_27

N+1

Note that some n_i must equal N+1.

sum for j < 32 each b_j

2731

b_31
b_31
b_31
b_31

b_31
b_31
b_31
b_31

b_31

24
0

&
b

b_
b_

b_

b
b

b_

b_

“first

30

30
30
30

30
30
30
30

30

2729

b_
b_

b_

b
b

b_

b_

29
29

29
29
29
29

29

b_28
b_28
b_28
b_28

b_28

incorrect VM

RPOOOON

b_27
b_27
b_27
b_27

b_27
step”

[<X-R-R-N-NN}

b
b
b
b

o}

26
26
26

_26

26

[<X-R-N-N-NN}

b_25
b_25
b_25
b_25

b_25

Thus,

Vicky

* 2**j

[=X-X-N-¥-

b_23
b_23
b_23
b_23

b_23

ococooo

b_22
b_22
b_22
b_22

bi22

ccooo

b_

b
b

|« 32

b_

21
21
21
21

has witnessed

*

coocooo

[eX-X-N-N-NN}

a commitment

2%2° 2% 220
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
a§ 0 0
b:2 41 0
b2 b1 4
b_2 b_1 b_0 = “last correct VM step”

of Paul to his faulty

N+1

BitVM Bridges

BitVM Bridges

e Bridge BTC to any other system

e Idea: a bit clunky is fine

e Bridge is used rarely. Only large amounts
e End users use cross-chain swaps

BitVM Bridge Guarantees

e A Federation, but a single honest member suffices
e (Guarantees that the bridge is safe and live
o safe: nobody can steal the deposit
o live: you can't stop a valid peg-out
e Large federations: +100 members
e You can be a member. Then you don't have to trust anyone

Limitations

e Complexity

e Balancing incentives: Loser has to pay winner's fees + bounty
e If incentives are balanced the chain is not needed

e Potentially capital intensive

e But no 1:1 collateral required

e For every peg-in all N parties have to pre-sign N peg-out TXs
e F[ederation can censor peg-ins

Summary & Outlook

e BitVM enables more complex Bitcoin contracts

e Use case: trust-minimized bridges for rollups, sidechains, L2s, ...
e Limitation: practical but clunky

e Requires no softfork

e Toy version ready this month

e Reckless mainnet this year

Questions?

