
BitVM
Off-chain Bitcoin Contracts



Motivation

● Blockchains don't scale
● Lightning doesn't quite scale
● Can we scale Bitcoin to billions of users?



Envisioning an Ideal World

● 100 - 1000x higher throughput
● Free market of L2s (zk-rollups, sidechains, zkCoins, ...)
● Rapid innovation / cheap experimentation 
● All L2s interconnected via LN
● Possible, but we need bridges!



Overview

● Stateful Bitcoin Scripts
● BitVM architecture
● BitVM bridges



Stateful Bitcoin Scripts



Bitcoin Script

● Satoshi disabled all the fun opcodes
● Reduced to minimum
● But enough interesting opcodes are left
● Scripts can be up to 4mb
● Bitcoin Script code golf



Stateful Bitcoin Scripts

● Idea: If we could sign a value... 
● Enforcing the same value for x in script1 and script2 
● Punish equivocation
● How to sign a value though? 
● We don't have CSFS...



● Conceptually very simple
● Require only hash functions
● Possible in Bitcoin Script
● Main drawback: large
● But one can sign a u8, u32, u160

Lamport Signatures



Lamport Signature for a 1-bit Message



BitVM Architecture



BitVM the paradigm 

● Tries to keep things off-chain (like LN)
● 2-party setting: prover and verifier
● Optimistic computation
● Disprove a faulty result (much easier than execution)
● Tree++



Tree++

● Language to express Bitcoin Contracts in graphs of transactions
● Templating language for Script

○ Evaluate constant expressions
○ Unroll loops
○ Compose functions

● Statefulness via Lamport signatures (u8, u32, u160, ...)
● Composite opcodes (xor, shift, mul, blake3, ...)
● Connector outputs
● Potentially large scripts, large Taptrees, and large TX graphs



BitVM the Bitcoin VM

● Don't want to hand-craft and hand-optimize a low-level circuit for 
every application

● Build some generic VM 
● Succinctly disprove any faulty result
● Ideally: RISC-V architecture 



BitVM Specs

● Basic instruction set rv32i
● Compile target for clang, gcc, LLVM
● Use existing C / C++ / Rust / ... libraries
● STARK & SNARK verifiers, etc...



BitVM Detailed Specs 

● Max steps: 2^32
● Memory: 2^32 * 4 bytes ~ 17GB
● Worst case: ~40 rounds of challenge & response
● "Court case" runs for up to half a year
● In total: ~150kb of Scripts
● Worst case is heavily disincentivized
● Likely never happens in real world applications



github.com/bitvm/bitvm/docs





BitVM Bridges



BitVM Bridges

● Bridge BTC to any other system
● Idea: a bit clunky is fine
● Bridge is used rarely. Only large amounts
● End users use cross-chain swaps



BitVM Bridge Guarantees

● A Federation, but a single honest member suffices
● Guarantees that the bridge is safe and live

○ safe: nobody can steal the deposit
○ live: you can't stop a valid peg-out

● Large federations: +100 members
● You can be a member. Then you don't have to trust anyone





Limitations

● Complexity
● Balancing incentives: Loser has to pay winner's fees + bounty
● If incentives are balanced the chain is not needed
● Potentially capital intensive
● But no 1:1 collateral required
● For every peg-in all N parties have to pre-sign N peg-out TXs
● Federation can censor peg-ins



Summary & Outlook

● BitVM enables more complex Bitcoin contracts
● Use case: trust-minimized bridges for rollups, sidechains, L2s, ... 
● Limitation: practical but clunky
● Requires no softfork
● Toy version ready this month
● Reckless mainnet this year



Questions?


