
bll, symbll, bllsh

 2

bll – Basic Bitcoin Lisp Language

● What is it?
– Little language like script
– Also has Loops
– Also has Structured data
– Simplest possible thing that

has both of those

● What does bll add to script?

● Loops
– Single “op_eval”-like opcode

● Structured data
– pairs of objects

 3

symbll – What is it?

● Variation on bll that’s easier
to program

● It’s own language that is
interpreted directly

● Very close to bll
– Easy to compile to bll
– Minimal surprises in what the

generated bll looks like

● Main features are:
– Named symbols
– Named functions with named

parameters
– Short-circuiting “if” macro
– “report” macro for printf-style

debugging

 4

bllsh – What is it?

● REPL for bll and symbll
● Step-through debugger for

bll and symbll
● Compiler for symbll

● Commands:
– eval / blleval
– def / undef
– tx / tx_in_idx / tx_script /

utxos
– debug / blldebug
– step / next / cont / trace
– compile / program

 5

What’s bll give you?

● Less hassle working around
script’s limitations:
– WOTS+ in script: 22kB+2kB
– WOTS+ in bll: 3.6kB+2kB

● Directly implement new
features (eg, ANYPREVOUT,
graftroot) without a soft fork

● “Permissionless innovation”

 6

Details: Generalised opcodes

● Bignum support
● Opcodes operate on lists of

arguments
● Re-enable opcodes
● Add new general functions
● Allow for future upgrades

● Calculate 100! Or implement
your own ECC curve math.

● (+ 1 2 3) vs “1 2 ADD 3 ADD”
● CAT, MUL, etc
● bip340_verify, bip342_txmsg,

tx, secp256k1_muladd
● (softfork ...)

 7

Details: Explicit bounds on computation

● Each opcode has a
computation “time” cost,
which may depend on its
arguments/result

● Total object allocation pool is
limited

● Txs should have a way of
adding virtual weight,
allowing more computation,
but still subject to block limit

● Tapscript current limits:
– 1 SHA256D calculation over

520 bytes of data per tx
weight unit

– ~520kB memory usage (1000
stack items of 520 bytes
each)

● (Note that memory usage
limit affects ability to verify
scripts in parallel)

 8

Details: Computation model

● Goals:
– Well-defined (it’s consensus!)
– Efficient

● Currently:
– Continuation passing style
– Tail recursion elimination
– Reference counting, with no

self-referential structures
– Small number of opcodes
– Very small number of

“macros”

● 37 normal opcodes
– Normal opcodes take each

argument in turn, evaluate it,
do something with it, and
return a result at the end.

● Only 4 macros, that behave
“specially” (namely “a”, “q”,
“partial” and “softfork”)

 9

Details: stack manipulation

● Bitcoin script has 19
opcodes for stack
manipulation

● bll has 5 opcodes, but
~infinity if you count
environment access codes

● bll expressions are always
evaluated against an
environment

● The environment is a bll
object, which may be a pair
of bll objects, each of
which… you get the idea.

● “1” is the environment as a
whole, “2” is the left item, “3”
is the right item, “4” is the
left/left item, etc...

 10

Philosophical considerations

● Thing to think about
– Computation vs verification
– Turing completeness
– People can do bad things
– Special case opcodes vs

general opcodes

 11

Computation vs verification

● Programming on the
blockchain is for verification,
not computation.

● The result you get is either
“1” – this transaction is valid,
or “0” – it’s not. If the result is
“0”, it doesn’t go in a valid
chain.

● “The solution was script, which generalizes the problem so
transacting parties can describe their transaction as a
predicate that the node network evaluates. The nodes
only need to understand the transaction to the extent of
evaluating whether the sender's conditions are met.

● “The script is actually a predicate. It's just an equation
that evaluates to true or false. Predicate is a long and
unfamiliar word so I called it script.”

– Satoshi, June 17, 2010

 12

Turing completeness

● Turing complete means
“cannot be sure this
terminates”
– Not turing complete because

computation limits ensure
termination

– Also not turing complete
because script sizes are
bounded by the block size

● Simplicity proposes “finitary
completeness”, which (AIUI)
gives you a strict bound on
execution time after doing
type checking, which itself is
linear.

 13

People can do bad things

● New types of spam
– Same limits as current chain

(limits on data/computation
per block)

● Construct covenants
– You define your own

scriptPubKey; let others burn
their funds if they want

● Unsafe wallet software
– Don’t trust things just

because they’re “Bitcoin”

 14

People can do bad things

● Put other assets on Bitcoin’s
blockchain
– Threat is that it may mean

other assets’ txs are more
valuable than BTC payments,
pricing out BTC from the
Bitcoin blockchain

– Already true thanks to
ordinals/inscriptions/runes/etc

– But also already true of
payments: considering
sending someone BTC in
order to exercise an in-the-
money option, just prior to
expiry

– Possibly not desirable:
Bitcoin is expensive and
slow; why not put your assets
on something cheap and
fast?

 15

People can do bad things

● MEV
– Authorise a transaction with

something other than a
SIGHASH_ALL sig

– Your authorisation may be
able to be pulled out and put
together on some other
transaction in a way that
loses you money

– Ultimately miners have the
most flexibility here, so are
most likely to win, hence MEV

● “Don’t do that”
– Have your authorisation set

an explicit fee (ie, the
difference between the value
of the inputs you’re
authorising spending and the
outputs you’re requiring to
exist)

– UTXO-model vs account-
model makes it much easier
for changed conditions to
invalidate previous
authorisations

 16

People can do bad things

● ...is just another way of
saying

“permissionless innovation”

 17

Special case vs general opcodes

● Special case opcodes
– Easier to use correctly
– Harder to misuse
– Shorter to encode on-chain
– Less flexible
– Can be hard to work out the

optimal specification
– Still possible to misuse
– Providing new features

require consensus changes

● Special case opcode:
– 2 <P1> <P2> <P3> 3

CHECKMULTISIG

● General opcode:
– for (pk : pks) {

 i += checksig(pk)

}

assert(i >= 2)

 18

Special case vs general opcodes

● General opcodes
– Easier to experiment with
– Covers more use cases with

less code
– Opens up all sorts of

behaviour, even bad ones

 19

Future work / TODO

● Finish coding “flexible earmark”
example

● Define a success condition
– (evaluates to non-nil? to nil? to

“1”? to anything that’s not an
error?)

● Rewrite from python to C++
● Extra opcodes?
● Merge to inquisition / deploy on

signet
● More use-cases / demos
● Formal specification

● C++ implementation
– Easier to measure what opcode

computation costs should be
– Allows apples-to-apples

comparison against simplicity
implementation

● Formal specification
– Allows oranges-to-oranges

comparison with simplicity
– Prove symbll code executes the

same as the bll code it compiles
too

 20

Links

● github.com/ajtowns/bllsh
● bitcoinops.org/en/topics/

basic-bitcoin-lisp-language/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

